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One of the corner-stones of modern hydrological science and practice is the use of 
simulation models. Whilst there are a large variety of modelling objectives, a whole 
range of different philosophical approaches also exist for achieving these different 
objectives.  
 The primary purpose of hydrological models is to make some kind of prediction. 
Due to the inherent variability of hydrological processes and only limited capabilities 
to measure them in the field, all models should be seen as approximations or 
simplifications of actual processes. Given the imperfect nature of our hydrological 
models, a key endeavour is to quantify the uncertainty associated with a model’s 
prediction. In this regard, a vast array of tools has been developed and is at the disposal 
of the hydrologist.  
 In this chapter, key issues associated with simulation modelling in hydrology are 
reviewed. In the first section, the range of modelling objectives and philosophical 
approaches to their simulation is presented. The subsequent section addresses the key 
sources of uncertainty in modelling endeavours. Following this, different approaches to 
the estimation and propagation of uncertainty are assessed. The next section addresses 
the key issue of application and/or regionalization of hydrological models to ungauged 
basins. The chapter finishes with concluding remarks and a look forward to effective 
hydrological modelling for a range of hydrological objectives. 
 
 
5.1  MODELLING OBJECTIVES 
Hydrological simulation models are utilized in a seemingly vast array of environmental 
studies and investigations. Hydrology and the movement and behaviour of water are 
fundamental to many allied research areas. Consequently, different aspects of land 
surface hydrology may be modelled in quite different ways depending on the 
objectives of the individual study. A short, but not exhaustive, list of key predictive 
areas for hydrological simulation models includes the following: 
 

– flood hydrology; 
– drought hydrology; 
– rainfall variability; 
– evapotranspiration and land surface-atmosphere fluxes; 
– erosion and sediments; 
– assessing the impact of changed circumstances (e.g. land use/cover change, 

climate change);  
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– water quality and ecosystem health; and  
– integrated (comprehensive) environmental assessment. 
 

 In many cases, the actual objective of a specific modelling activity may be directly 
related to the approach subsequently taken. For instance, a wide range of modelling 
approaches exists for simulating a basin’s water yield (e.g. Singh, 1995). The 
hydrologist, if armed with rainfall–runoff data of sufficient quality and quantity, may 
choose a relatively simple transfer function-based hydrological model. However, if the 
study required assessing, for instance, the future effect of logging on the basin water 
yield, a more physically-realistic model containing explicit functions for the role of 
vegetation in the hydrological fluxes may be required. The transfer function approach, 
being largely a mathematical construct to mimic the observed behaviour, would 
struggle to represent future change in the basin as the derived model parameters might 
not easily be related to future changes in the basin’s nature. This approach would, 
however, be robust for simulating its current behaviour as transfer function approaches 
are parsimonious and hence parameters tend to be well identified (e.g. Jakeman & 
Hornberger, 1993). In the case of a more distributed, physically-based approach, the 
model is distinctly more complex with more parameter values required to be either:  
(a) measured in the field, or (b) identified in a calibration procedure. Given the diffi-
culties in both measuring appropriate parameter values in situ as well as the problem of 
obtaining non-unique sets of parameters in calibration, there will be significant 
uncertainty associated with the complex model (e.g. Beven, 1993). 
 Clearly, the choice of which type of model to use must therefore be governed by 
the questions to be answered by the model. If an extension of previous behaviour is 
required, a transfer function approach may be most robust. If simulating changes to the 
basin is the study objective, a more explicit and complex model should be used. The 
model needs to include an explicit representation (or a sufficiently accurate 
parameterization) of the physical processes that are assumed to govern the basin 
evolution. However, in common to both approaches in this example, significant 
uncertainty exists and hence the uncertainty of the modelling endeavour must be 
quantified. 
 
 
5.2  DIFFERENT MODELLING PHILOSOPHIES 
The example given in the previous section alludes to the existence of marked 
differences in modelling philosophies, all utilized within the wide field of hydrological 
science. At the extreme ends of a spectrum, these can be summarized as inductive vs 
deductive approaches. The inductive approach seeks to find and establish relationships 
between variables through the observation of the variables themselves. Inductive 
hydrological modelling approaches are consequently characterized by the data 
available defining the model in application to a specific study basin or area. The 
alternative modelling approach is the deductive approach. This approach follows 
logical reasoning in the construction of a model and may not have any recourse to the 
actual data/variable.  
 The inductive/deductive nexus is not unique to hydrology; they are two extremes 
of scientific approaches that often compete in any given scientific area despite the 
simple observation that they are in fact complementary and equally important. In the 
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sphere of hydrological modelling, a good example of the diversity of approaches lies in 
rainfall–runoff modelling. Hydrologists tending toward the inductive approach may 
utilize data-based modelling approaches (e.g. Young, 2001) such as combinations of 
linear transfer functions, or highly parsimonious conceptualized rainfall–runoff models 
which are then calibrated to available data. Hydrologists tending towards the deductive 
approach may adopt a fine-scale distributed hydrological model with constituent 
processes being represented by laboratory-derived physical “laws” such as the Darcy-
Richards equation (e.g. Abbott et al., 1986). Another way of conceptualizing the two 
fundamentally different approaches to model building is the “top-down” vs the 
“bottom-up” approach (Sivapalan et al., 2003a).  
 Strictly speaking, neither group is wholly inductive or deductive; the data-based 
models do have some structure that may represent how hydrological processes may be 
expected to exchange fluxes between stores, albeit not utilizing more complex 
laboratory-derived flux relationships. The more complex, distributed “physically-based” 
approaches still seek to evaluate the resultant model on available data and perhaps 
make subsequent adjustments on the basis of this comparison. Nonetheless, such 
philosophical differences in approach are a characteristic feature of modelling in 
modern hydrological science. The fact that alternative approaches to hydrological 
simulation exist is due to the significant uncertainty in the application of any model to 
any specific basin. In the following section, the sources of uncertainty in hydrological 
modelling are reviewed. 
 
 
5.3  UNCERTAINTY IN HYDROLOGICAL MODELLING 
There are three principally different sources of uncertainty in hydrological modelling: 
data uncertainty, model structure uncertainty and parameter uncertainty. Each source of 
uncertainty is discussed in more detail below.  
 
5.3.1 Data uncertainty 
Data uncertainty arises as a result of the imprecision or commensurability of the data 
used to force or else to calibrate a model. For example, in rainfall–runoff modelling, a 
model is forced with rainfall input data and the parameters are tuned until the model 
simulated outflow (runoff) corresponds best to the measured runoff from the basin 
area. Data uncertainty must be assumed to be present in both rainfall and runoff data.  
 Rainfall data may be corrupt for two key reasons. First, raingauges have 
measurement error associated with them. If two identical gauges are placed side by 
side, there will be an inherent, albeit hopefully relatively small discrepancy, between 
the two. For a single raingauge, errors may be induced by the local meteorology around 
the gauge (e.g. the wind effect or snowfall) and can be reduced by using a more 
sophisticated gauge design or installation procedure. Perhaps a far larger source of 
uncertainty associated with rainfall data lies in how representative a single gauge is of 
the total rainfall falling across some spatial extent within the basin area. This can be 
partially compensated for by the use of rain radars, which provide the rainfall 
distribution. (A more detailed discussion of different methods of rainfall measurement 
is provided in Section 4.2). Uncertainty associated with the runoff time series is 
arguably less problematic than with rainfall since, at least in principle, the runoff 
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measured from a basin should be an integrated response from the basin area. However, 
runoff can be exported from the basin through unrepresentatively defined basin 
boundaries, and as underflow beneath the flow gauging structure. 
 Furthermore, flow gauging structures are required to be calibrated in the field at a 
range of flows. The subsequent rating curve is then only truly applicable for that range 
of flows. Over time, the channel reach upstream of the gauging structure may well 
change as a result of natural geomorphic/sedimentary processes, which may impart an 
error to the rating curve. Consequently, rating curves should be evaluated and checked 
on a regular basis. A larger source of error comes when the flow in the channel exceeds 
the range of flows used in the calibration of the gauging structure (observation of 
extremes). The estimation of flow outside this range represents an extrapolation of the 
rating curve. This may not be too critical so long as the flow remains within the flow 
gauging structure’s geometry. When flows overtop the gauging structure, leading to 
complex channel geometry with potentially complicating shear patterns, peak flows 
can only be estimated after the flood through a subjective consideration of the flood 
inundation across the channel section (and potentially flood plain). This is somewhat 
unfortunate as it is often the high flows that are of most interest in many rainfall–runoff 
exercises and yet are the most uncertain. The observation of low flows is also often 
problematic, in many cases due to anthropogenic influences.  
 For more sophisticated models, data uncertainty also affects other terms of the 
hydrological balance, such as evapotranspiration or soil water storage. These data are 
very difficult to measure and new perspectives may be offered by remote sensing. 
However, the uncertainty of these new data sources is often not well known, as the 
comparison with ground-based observation is difficult (see Chapter 4, especially 
Sections 4.2–4.6 and 4.9 for detailed discussions of the use of remotely-sensed data of 
many hydrological parameters). 
 Another source of data uncertainty can be encountered when using meteorological 
data from a meteorological model (for instance, for an ungauged basin) or climate 
model (for a climate change impact study). The resolution of the input data is generally 
crude compared to the ground observation network or even to the basin surface area. 
Moreover, precipitation amount derived from atmospheric models can present biases 
for small time scales such as hours or days. Specific algorithms (e.g. anomalies 
methods, analogue methods, regional atmospheric models) have to be used to disaggre-
gate the large-scale data and adapt them to the scale relevant for hydrological 
modelling. The uncertainty of the approach is very dependent on the method and the 
hydrological model and it can be estimated by testing the results for a well-
instrumented basin. 
 
5.3.2 Model structure uncertainty 
Model structure uncertainty is the uncertainty associated with the choice of the 
hydrological model and its appropriateness with regard to the application at hand (e.g. 
Grayson et al., 1992). Model structural error is arguably the hardest source of 
uncertainty to quantify; it is the error associated with not knowing a priori which 
processes and what process description best approximate the processes present at the 
application site. This uncertainty arises as a direct function of the limited observational 
capability of hydrology and the complexity of the processes in practice. Indeed, there 
are numerous hydrological models available that all purport to achieve the same 
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predictive outcome (for instance, basin runoff) and yet comprise many alternative 
descriptions to achieve the same aim. Consequently, many conceptual models may 
have parameter values with more or less the same physical interpretation (e.g. root 
zone depth), but these values cannot be directly measured in the field or in the 
laboratory (because of monitoring difficulties or huge spatial variability). This problem 
is not limited to “conceptual” models. Even “physically-based” models may include 
parameterizations that differ from one model to another. The parameters are generally 
calibrated in these models, but, as the models contain different mathematical 
descriptions of how the processes are thought to operate (based on our incomplete 
understanding of hydrological process, see e.g. Section 7.1), when different models are 
calibrated to the same datasets very different parameter values may be returned, even in 
the absence of multiple optima in the response surfaces. This is due to the fact that 
parameter values are interlinked; in other words, the values of all parameters of a 
calibrated parameter set may influence, to some extent, the values of a given parameter. 
 Model structural uncertainty may also be present due to the non-stationarity of 
processes operating in the basin. For instance, significant changes to the hydrological 
flow pathways may occur over time, which may (in extreme cases) lead to significant 
changes in the behaviour of the basin. As all hydrological models tend to assume 
stationarity of the processes, it must be accepted that there is an inherent uncertainty 
associated with basin evolution, which is probably impossible to robustly detect and 
correct for in the model procedure. 
 
5.3.3 Parameter uncertainty 
Parameter uncertainty can be defined as the uncertainty associated with the specifica-
tion of model parameters. If hydrological models were perfect representations of 
natural hydrological processes, then the parameters associated with our perfect model 
would be entirely physically meaningful. If techniques were available for quantifying 
the actual hydrological processes in the natural environment, then the resulting 
measurements would be input to our models as physically meaningful parameter values 
(for example, hydraulic conductivity, soil depth patterns). 
 In practice our models cannot reflect the vast complexity of each individual hydro-
logical pathway and process. Moreover hydrological measurement techniques are 
imperfect. Whilst an error of an order of magnitude can be readily encountered in 
measuring hydraulic conductivity of a soil, it should be recognized that hydraulic 
conductivity is highly variable across a basin and with depth. The notion of measuring 
soil hydraulic conductivity at the scale of its variability would be prohibitively expen-
sive as well as highly destructive to the basin itself! 
 Given the problems of spatial complexity, many hydrological models aggregate 
complex hydrological processes into simpler conceptual representations of their net 
effect. Such models have the distinct advantage of being relatively parsimonious with 
regard to the number of parameters that require specification. One disadvantage is that 
the resultant parameter values, whilst retaining a nomenclature that suggests a physical 
basis, are in fact at best “effective” parameter values or at worst entirely conceptual 
with hardly any physical basis. 
 An advantage of parsimonious conceptual models is that the relatively low number 
of parameters may be calibrated, given historic input and observed output data. Put 
simply, the model parameters are adjusted so that the model simulation best matches 
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the observed hydrological response. The advantage of a model having fewer parameters 
lies in the tractability of the appropriate parameter values from the limited information 
contained within the provided input and observed response data. When too many 
parameters require calibration, there are often multiple combinations of parameter 
values that all yield similarly “good fits” in the calibration exercise. 
 
 
5.4  MODEL PARAMETERIZATION  

The early hopes of the pioneers of hydrological simulation models were founded on the 
advent of the ‘micro-processor’ which, for the first time, made computer-based 
simulation of hydrology feasible. These early days of hydrological modelling saw the 
development of sophisticated modelling schemes, representing each and every process 
the modeller could envisage. The early hopes were that model parameters that 
represent physical properties of the application basin could be measured in the field, 
plugged into the simulation model and accurate model simulations would follow. 
These efforts were confounded by the difficulties of achieving representative 
measurements of the constituent processes. Where processes are represented in a 
lumped manner, the spatial variability of hydrological processes precluded the 
derivation of “effective” measurements. In explicitly distributed models, even at the 
scale of the smallest distributed unit, spatial variability confounds the direct measure-
ment of a representative parameter value. Other basin properties are very difficult to 
observe, particularly those relevant to subsurface flow pathways (although promising 
new techniques are being developed as discussed in Sections 4.4, 4.5 and 4.9). 
Consequently, modellers turned to calibration of hydrological simulation models to 
identify appropriate parameters. 
 
5.4.1 Model calibration 

Calibration is the act of adjusting model parameters and then comparing the simulated 
variable against observations of that variable. Many calibration strategies exist which 
differ in their approach to determining the “optimal” parameter value. The simplest 
form of calibration is manual tuning; in essence, the modeller alters certain parameter 
values according to some subjective judgements on how the model’s processes can be 
best adjusted to improve the comparison of simulated and observed variables. More 
sophisticated calibration schemes tend to be automatic: a calibration algorithm searches 
through the parameter space to identify the best fit between simulated and observed 
variables (e.g. Gupta & Sorooshian, 1985). The advantage of automated calibration 
routines is that very high dimensional parameter spaces can be efficiently explored. 
The argument for the continuing use of manual calibration is that, whilst inherently less 
efficient, the operator can guide the search to implicitly include expert notions of how 
that basin actually behaves, whereas automated routines may fit the observed data 
through unrealistic process parameterizations (Klemeš, 1986). Although automated 
routines are increasingly employed it is significant that the US National Weather 
Service still relies on manual tuning. 
 In either case, an objective function is used to quantify the comparison of 
simulated and observed variables. In many cases, the objective function is some kind of 



 Chapter 5, Hydrological Simulation Modelling    111 

goodness-of-fit criterion, or else it is based on explicit assumptions about the errors 
(residuals). It has often been noted throughout the hydrological literature that the 
choice of objective function can have a marked consequence on the best-fit parameter 
set ultimately derived. 
 Regardless of the choice of objective function and the means employed for 
calibration, most conceptual basin models suffer from the same problems, namely the 
existence of multiple optima and the presence of high interaction or correlation 
between subsets of fitted model parameters (e.g. Soorooshian & Dracup, 1980). A 
consequence is that there may exist many parameter sets which span a wide range of 
the feasible parameter space, yet produce similarly high values of the objective 
function and even virtually indistinguishable simulated stream flow sequences.   
 The presence of multiple optima in the parameter space response surface is often 
due to the over-parameterization of models (e.g. Beven, 1993). Over-parameterization 
is largely a consequence of complex models permitting multiple alternative pathways 
for water fluxes to exit the basin. The data used to evaluate such models does not 
contain any information on these alternate pathways; consequently, the model has 
multiple combinations of parameters that can all reproduce the relatively uninformative 
observed flows. This has been referred to as the equifinality problem (Beven & Binley, 
1992), meaning that different models or parameter sets yield equally good simulation 
results. This is particularly the case for distributed models and models with large 
numbers of parameters to be identified by calibration. 
 Such poor parameter identifiability may result in considerable uncertainty in the 
prediction of fluxes (e.g. Seibert et al., 2000) and states used in model testing, and 
perhaps, more importantly, makes attempts to regionalize model parameters for the 
purpose of application to ungauged basins virtually impossible. Parameter identifia-
bility is intimately linked to the information content of available data as well as to the 
complexity of the model. The modelling dilemma can be bluntly described as follows: 
a simple model cannot be relied upon to make meaningful extrapolative predictions, 
whereas a complex model may have the potential for prediction, but, due to 
information (data) constraints may be unable to realize it with little uncertainty. 
 
5.4.2 Model verification 
Ultimately, all hydrological simulation models should be tested for their ability to 
reproduce the dynamics of the basin system for which hydrological data are available. 
Testing hydrological models therefore requires data to achieve some objective measure 
of their performance, irrespective of the rationale for a given choice of model structure. 
 The typical way that this has been achieved in hydrological science has been 
through the use of the “split sample” or “calibration-validation” test (Klemeš, 1986). In 
this procedure a portion of the available data is set aside and not used in calibration, but 
is retained for the purpose of evaluating the calibrated model’s simulation of an 
independent period of data. 
 

 A Popperian view of hydrological model testing Popper (1959) proposed a theory 
of falsification of testable hypotheses which is widely regarded as the basis of the 
scientific method. Both Dooge (1986) and Beven (1987) refer to Popper’s theory as a 
basis for the critical assessment of hydrological models. Its key elements are elucidated 
below. 
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 The scientific method provides an objective framework for the advancement of 
scientific knowledge. In our context it can be regarded as a model filter whose 
objective is to identify, in some sense, the best model(s). In the crudest terms, a 
scientifically-acceptable model filter involves iteration of the following two steps. 
First, the modeller conceptualizes a model structure or, more accurately, proposes a 
testable hypothesis. This is a creative act based on the modeller’s world view which is 
much affected by current paradigms and knowledge, and by his/her experience. In the 
second step the creative act of the modeller is subjected to objective scrutiny in which 
the modeller attempts to falsify the hypothesis; this is what is referred to as model 
testing. The hypothesis must be falsifiable in the sense that it rules out the occurrence 
of certain events. Accordingly, the modeller compares model predictions against 
independently observed data to look for contradictions, a fundamental component of 
the scientific method.  
 In practice, all hydrological models can be easily falsified as the models them-
selves are often gross simplifications of reality which tend to lump complexity 
observed in the field at some scale. If, in any given application, the model underper-
forms in the representation of a particular aspect of the observed dynamic of the 
system, the models are then often adjusted, via a change in how a particular process is 
represented or else through a more judiciously selected parameterization. In the 
Popperian view of science, this can be seen as an auxiliary hypothesis: the model is 
adapted to fit the observations through additional complexity. However, the data 
utilized to reformulate the model cannot thereafter be used in a Popperian test of the 
model. 
 Popper argues that an auxiliary hypothesis should only be acceptable if it increases 
the degree of falsifiability of the model. Conversely, auxiliary hypotheses that add 
complexity to the model to protect it from falsification must be rejected. Popper’s 
caution about auxiliary hypotheses protecting a model from falsification is another 
manifestation of the principle of parsimony. This principle requires the modeller to 
articulate the simplest model hypothesis consistent with the evidence/observations.   
 In the hydrological context the principle of parsimony does not appear to be 
widely articulated, possibly because reductionism coupled with a deep belief in the 
correctness of scaling up small-scale physically-based models has been the dominant 
paradigm. It has previously been argued that, if only streamflow data are available, 
simple models with four or five parameters based on a quick- and slow-flow 
conceptualization provide an adequate fit to the data (e.g. Jakeman & Hornberger, 
1993). Moreover, the addition of more model structure and its associated conceptual 
parameters often leads to no significant improvement in fit yet introduces poorly 
identified parameters.  
 The principal weakness with this approach is that the model is typically tested 
against the same response (namely streamflow) to which it was calibrated. A split-
sample test using streamflow data should be treated as the minimum requirement for 
testing model performance in an operational application. It has been observed that if 
the input data in the two split samples, one used for calibration and the other for 
testing, are qualitatively similar in the sense that the inputs span similar ranges, then 
the test lacks rigour. In essence, split-sample testing often represents a token challenge 
of the model hypothesis. Split-sample testing is obviously necessary, but is by no 
means a sufficient technique to challenge a model hypothesis. 
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 The credibility of model testing depends on the power of the methods used to 
challenge or falsify the model hypothesis. The term “power” is a statistical concept 
describing the ability to discriminate between good and bad hypotheses. How the 
independent data are chosen can critically affect the power of the testing step. At the 
heart of the model testing problem is data, or rather the lack of it. With streamflow, 
typically the only observed basin response available, there is insufficient information to 
identify the conceptual parameters and, worse still, to meaningfully challenge the 
model hypothesis. One obvious and well-documented way to resolve this impasse, at 
least partially, is to couple more complex models with streamflow data augmented by 
other kinds of hydrological information relevant to the prediction task. We call this 
data augmentation, stressing that it is the information content of the data that is being 
augmented, not the data itself. Examples of data augmentation include streamflow and 
stream solute concentrations at different locations within the basin and other 
measurable hydrological fluxes or states such as soil moisture, piezometric levels and 
evapotranspiration at selected locations (e.g. Ambroise et al., 1995; Mroczkowski et 
al., 1997; Franks et al., 1998; Uhlenbrook et al., 2004). Such data present additional 
opportunities to test or falsify model hypotheses but often require additional model 
complexity via auxiliary assumptions and parameters. 
 
 
5.5  INTERNAL STATES AND THE ISSUE OF COMMENSURABILITY 
Much recent research has focused on seeking additional measures of hydrological 
states and fluxes with the aim of providing more information for the calibration and 
testing of hydrological models. Examples include: 
 

– fluxes (runoff, evaporation) measured at small scales; 
– borehole logs to characterise water table dynamics; 
– distributed soil moisture fields;  
– hydrochemical data and environmental isotopes, and 
– measures of contributing areas.  
 

 In many cases problems are encountered using these additional data. Model 
structures are grossly simplified representations of reality and field-measured fluxes 
may not be directly comparable to the quantities predicted by the models. This issue of 
commensurability of data and models can often mean that auxiliary hypotheses (in 
other words, additional model complexity) need to be introduced if the two are to be 
compared. These additional degrees of freedom have the effect of reducing the 
information content of the data and reducing the opportunity for falsification. This is 
not to say that the additional data cannot aid the robust testing of hydrological models, 
rather that their worth is not immediately apparent and that the incorporation of such 
information needs to recognize this problem. In the following sections the issue of 
commensurability is explored using specific examples. 
 
5.5.1 Examples of commensurability 
 Local measures of water levels Within the TOPMODEL framework (Beven et al., 
1995), the subsurface discharge at a given point in the landscape where there is surface 
saturation is (equation 5.1): 
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 qi = Ti tanβ     (5.1) 
where qi is the local subsurface discharge at a point i (m2 s-1), Ti is the transmissivity 
(m2 s-1), and tanβ is the local slope. Transmissivity is usually parameterized within 
TOPMODEL as a lumped effective basin-scale parameter. This is appropriate as 
distributed information about local transmissivities is usually unavailable. 
 To utilize distributed point measurements of local water table dynamics, either as 
additional calibration data or as internal testing of model dynamics, the effects of local 
deviations from the basin effective transmissivity must be acknowledged and 
permitted. An interpretive model (or auxiliary hypothesis) must be specified to permit 
local deviations of transmissivity and porosity according to the following (equations 
5.2 and 5.3): 
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where T0 is the basin effective transmissivity at saturation (m2 s-1), m is the exponential 
transmissivity decline parameter (m), zi is the local depth to the water table (m), Di is 
the storage deficit at point i (m), and Δθi is the effective water content change per unit 
depth in the unsaturated zone (porosity) (–). 
 To calculate the local corrections to transmissivity and porosity at the site of a 
borehole log, equation (5.3) must be applied to two water table observations. In 
essence, the water table observations are made commensurate by assuming that both Ti 
and Δθi are constant over a range of water table depths, and using these two local 
parameters to scale the observations in line with the predicted storage deficits. It is 
therefore clear that the interpretive model necessitates additional degrees of freedom in 
the model structure (i.e. the parameters representing the local deviations of 
transmissivity and porosity) to enable comparisons of local point measures against the 
model storage deficits. These additional degrees of freedom offer, on the one hand, the 
possibility of using additional data in model calibration and testing, but on the other 
hand, it has the effect of reducing the informative content of the data. 
 Recent applications of water table measures to constrain the predictions of 
hydrological models have revealed some utility of this approach (e.g. Lamb et al., 
1997, 1998). In their study of the HBV* model, Seibert et al. (1997) found that no 
single parameter set could reproduce both discharge and water table data necessitating 
the rejection of the model as a hypothesis. They subsequently modified the model 
structure to enable consistent reproduction of both variables. However, while 
distributed water table depths are intuitively an obvious choice of additional 
measurement if planning a field campaign, their local nature and the necessity of an 
interpretive model as described above, reduces the power to falsify model hypotheses. 
 

 Microwave remote sensing Research in the microwave remote sensing domain has 
offered some promise of delivering distributed datasets of soil moisture useful for 
model calibration and testing. However, several problems exist. The accuracy of 
 
* Named after the former Hydrologiska Byråns Vattenbalansavdelning (Hydrological Bureau Waterbalance Section), 

at SMHI, the Swedish Meteorological and Hydrological Institute, where the model was originally developed. 
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retrieved absolute soil moistures is complicated by factors such as differences in soil 
characteristics, surface roughness (especially vegetation type and density), and 
topography (see for example, Lin et al., 1994; Dubois et al., 1995; Famiglietti et al., 
1999). Even in ideal conditions, microwave remote sensing can detect soil moisture 
only in the upper few centimetres of the soil, yet both runoff generation and 
evapotranspiration may be more strongly controlled by deeper layers. Further 
limitations result from the reduced sensitivity of the radar signal to soil moisture 
changes close to saturation and the specular nature of the signal in areas where water 
becomes ponded leading to decreases in the backscattering coefficient (Bertuzzi et al., 
1992). 
 

 The problems of deriving surface roughness for microwave remote sensing are 
significant. It is also apparent that even if robust measurements could be achieved, the 
value of surface measures, as opposed to profile (depth-integrated) measures, remains 
questionable.  
 

 Saturated areas It was shown earlier that incorporating borehole water table 
dynamics may not be straightforward due to the requirement to adapt a given model 
structure to account for highly localized basin characteristics unparameterized in 
lumped conceptual models. The worth of highly localized measures of hydrological 
fluxes must always be questionable. An alternative data augmentation approach would 
seek more integrated measures of basin response, for example the areal extent of 
surface saturation or contributing areas. This is intuitively appealing as the effects of 
real-world high-frequency local variability may be integrated into a measure that is 
more commensurate with simulated responses.  
 Such an approach was utilized by Gineste et al. (1998) who analysed microwave 
backscatter behaviour in a 1.2 km2 subcatchment of the Naizin basin, northern France, 
where saturated areas were observed every three days concomitantly with the 
acquisition of satellite data. The areal extent of the saturated area could not be assessed 
for each individual date but a saturation potential index (SPI) was derived on a pixel by 
pixel basis from the temporal standard deviations for each pixel computed on the 
filtered images of backscatter. The rationale for such an approach was that areas which 
would be most prone to saturation would be those that exhibited the least temporal 
variability of moisture (due perhaps to significant lateral redistribution of upslope 
moisture). As noted above, an active microwave signal is affected by both soil moisture 
content and soil roughness. By using a temporal change approach the obfuscatory 
effect of roughness, assumed to be constant in time, could be negated.  
 Utilizing an approach based upon combining threshold values of the topographic 
index and the SPI, the limited ground-truth data available were extrapolated to yield 
estimates of the total basin saturated area extent (Franks et al., 1998). As this 
extrapolation is inherently uncertain, multiple combinations of the topographic index 
and SPI were used and a range of feasible saturated areas produced. These derived 
estimates of saturated area fraction were then used as a secondary modelling objective 
against which model simulations were compared and rejected. The saturated area 
information, though noisy, significantly reduced uncertainty in the model parameters, 
particularly the basin effective saturated transmissivity parameter. Perhaps of more 
significance, the uncertainty in the model predicted discharges was markedly reduced; 
the uncertainty of the peak discharge was reduced to approximately 30% after inclusion 
of the saturated area data. 
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5.5.2 Commensurability and interpretative models 

The three examples above all provide opportunities to further discriminate between 
different models and/or parameterizations. Additional information may be utilized to 
provide further conditioning or testing of the model, but the inclusion of additional 
information is not straightforward as the data are not necessarily commensurable with 
the model. Direct insertion of the additional data is precluded by the fact that it does 
not necessarily correspond directly to a model simulated flux or state. Interpretative 
models are required to transform the data in some way to be commensurable with the 
model. This inherently requires additional model complexity and weakens the apparent 
informative content of the data. Nonetheless, the inclusion of such additional data can 
still provide further information with which to refine or verify models. It also offers the 
possibility to predict internal stages (e.g. water table fluctuations) with more 
confidence after such data are included in the model calibration procedure. This is 
often needed in model studies that are part of an extensive environmental assessment, 
for instance.  
 
 
5.6  UNCERTAINTY ESTIMATION 

Hydrological models simulate the dynamics of some or a number of aspects of 
terrestrial biophysical behaviour. Common to all these models are the following features: 
 

– They are idealizations/simplifications of complex natural systems which have both 
spatial and temporal dynamics. 

– Forcing inputs such as climate are uncontrollable, meaning controlled experi-
mental designs are difficult to implement. 

– Observations of forcing inputs and system responses are subject to (often consid-
erable) error, on account of the spatial extent of the system. 

 

These features conspire to introduce a complex and substantial uncertainty into any 
endeavour to identify, calibrate and validate a hydrological model and to use it for the 
purpose of prediction. 
 A common requirement of hydrological models is the ability to extrapolate model 
predictions into system dynamics that have not previously been encountered or used 
for model calibration exercises (“predictions in the unknown”). This permits the use of 
hydrological models as “experimental laboratories” in which the response of the 
system to external perturbations, for instance, significant land use change, or climate 
change, can be assessed. Typically, physically-based and/or conceptual models are 
built for this purpose. These models contain mathematical descriptions of individual 
processes in the hope that the constituent individual process descriptions can be 
sufficiently identified by measurement of field parameters. When this is not possible, 
calibration of the model is performed with the same aim, namely to adequately identify 
the individual process descriptions. When the model is applied to an extrapolative 
forcing circumstance (such as land use change), it is assumed that the physical basis 
underlying the individual process descriptions will provide the most representative 
prediction of the natural system.    
 A key problem with this current paradigm is that many physical processes, of 
which not all are well understood (e.g. subsurface stormflow generation), may 
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influence the integrated response of the natural system at hand. The fact that complex, 
non linear multiple processes interact to produce a variable of interest means that a 
calibration exercise performed against that variable is a non-unique “inverse problem”, 
characterized by multiple parameter sets that can simulate the calibration variable 
equally well. Whilst many a priori parameter sets may be rejected through comparison 
to calibration data, many remain as acceptable simulators of the system. The extreme 
degree of this problem renders modelling studies in all areas of hydrological research 
subject to unacceptable uncertainty with respect to predicting system responses to 
change. This uncertainty is poorly understood, indeed misinterpreted, primarily 
because our current approaches for dealing with model identification and calibration 
make simplistic assumptions about errors in environmental models.  
 
5.6.1 Current approaches to uncertainty estimation 
Three schemes, presented in the hydrological literature, typify current approaches to 
estimating the prediction uncertainty of models. Firstly, Beven & Binley (1992) 
adopted an informal Bayesian approach called GLUE whereby additional information 
can be incorporated and used to refine the model parameter inferences (e.g. Beven & 
Freer, 2001; Uhlenbrook & Siebert, 2005). A problem with this approach is the degree 
of subjectivity in assessing the relative acceptability of competing parameter sets (i.e. 
subjectivity in the definition of the likelihood function). Moreover, all sources of 
uncertainty are treated through parameter uncertainty simultaneously and the method is 
very computing intensive, often requiring several thousands of model runs†.  
 Sorooshian & Dracup (1980) developed criteria for parameter optimization which 
were guided by the statistical behaviour of model residuals. However, errors in input 
and response and model structure were lumped together. The NLFIT scheme 
(Mroczkowski et al., 1997) implements a stricter and more traditional Bayesian 
implementation than GLUE using the Sorooshian & Dracup error approach. 
Nevertheless, it has been found that the error probability models used in NLFIT are 
unsatisfactory when used with models that make predictions over short intervals. For 
example, errors in simulating monthly streamflow are adequately described by 
traditional error models, whereas errors in hourly streamflow cannot be satisfactorily 
described using commonly used error models of heteroscedasticity and persistence as 
the real error structure is much more complex. In a third type of scheme, Yapo et al. 
(1998) developed a multi-objective function approach whereby many different 
objective measures of fit are used to derive the Pareto-optimal set of parameters. Like 
GLUE, this scheme suffers from subjectivity in the selection of the number and type of 
objective functions.  
 One common feature of all these calibration schemes is the lack of any treatment 
of errors in the forcing data, such as rainfall, potential evapotranspiration, and nutrient 
inputs. At first sight this may be surprising given that the significance of such errors 
was appreciated decades ago. In 1967, Fiering showed that, in the presence of storage, 
errors in estimating rainfall input will lead to errors in rainfall-dependent model outputs 
such as streamflow which persist for a considerable time after the input has occurred as 

 
† As far as the authors are aware, the record for the largest number of Monte Carlo runs is held by Iorgulescu et 

al. (2005) who carried out more than two billion model runs for a combined hydrological-hydrochemical 
modelling effort.  



118    Hydrology 2020: An Integrating Science to Meet World Water Challenges   

the storage maintains a “memory” of the input error. Such errors occur in virtually all 
hydrological models because temporary storage is virtually a universal feature in 
natural systems. Often, long runs of persistent under- or over-estimation are apparent in 
model simulations, arising from input error and its persistence. Even if the streamflow 
was measured with negligible error and the rainfall–runoff model used was structurally 
correct, errors in rainfall input can induce persistent errors. If these errors are incorrectly 
attributed to model error, the credibility of the model is unfairly undermined and the 
accuracy of predictions is unduly devalued. All models are simplifications at some 
level and hence must be in error. Processes that are known to exist and/or dominate in 
the field may be described in a number of ways with varying degrees of complexity. 
Uncertainty will therefore arise from the range of possible descriptions that may be 
employed to describe the same phenomena, as evidenced by the large number of 
available hydrological models published within the scientific literature.  
 The statistical difficulties in dealing with input forcing errors are formidable and, 
as a result, little research has been undertaken to tackle this problem. The few 
exceptions have not proved to be successful. For example, Kitanidis & Bras (1980) 
employed the Kalman filter, a conceptualization ideally suited to distinguishing 
between model response and input error provided the model can be suitably linearized 
and errors follow a Gaussian distribution. Unfortunately the promise of the Kalman 
filter has never been realized, largely because of the very significant nonlinearity of 
environmental models (Duan et al., 1992) and the need to linearize the hydrological 
model with regard to parameters and inputs. The difficulty is that the assumptions of 
traditional likelihood/optimization theory (namely: a correct model structure, Gaussian 
error distribution, independence amongst measured variables, and independence of 
temporal errors) are violated in hydrological modelling. Given that hydrological 
models are excessively simple representations of reality, a correct model structure 
cannot be assumed. Moreover, it is well known that measures of pertinent variables, 
such as rainfall, discharge and evaporation, contain significantly nonlinear errors. To 
date, an appropriate theory for distinguishing between model, response and input errors 
has not been defined. 
 Significant model uncertainty may also exist due to the omission of a key control 
on the response of the natural system. Numerous mechanisms exist by which moisture 
may be transported to the basin outlet, each of which is uncertainly quantified in the 
field. However, recent attention to the role of subsurface preferential pathways has 
indicated that, despite their limited volume, they can in fact dominate the hydrological 
response of certain types of basins. The problem in representing such pathways lies in 
the fact that they are often impossible to observe. In fact, studies demonstrating the 
effects of such pathways are largely comprised of indirect evidence (e.g. isotope 
studies of old/new water contributions to basin outflows). It is therefore clear that 
significant uncertainty must be associated with the choice of model structure in any 
application attempting to simulate basins where subsurface flow pathways dominate 
the basin response. 
 To differentiate the role of model structure error from that of error in the forcing 
data and parameter uncertainty, the relative roles of parameter uncertainty and input 
forcing errors must be quantified. If, after permitting parameter uncertainty and input 
error, errors remain in the reproduction of the model outputs, then this residual error 
must be representative of model structure error.  
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5.6.2 Alternative approaches to uncertainty estimation 
As indicated earlier, typical applications require models to be calibrated and validated 
against observed flows given meteorological input data. Numerous schemes have been 
developed to address this task, including MOCOM (Gupta et al., 1998), GLUE (Beven 
& Binley, 1992; Franks et al., 1998) and NLFIT (Mroczkowski et al., 1997). However, 
Franks & Kuczera (2002) showed that all these contemporary approaches oversimplify 
the uncertainty associated with the appropriateness of the model to the study area and 
the measurement of both meteorological forcing and runoff. By ignoring these key 
sources of error and uncertainty, typical calibration schemes have been shown to 
produce biased estimates of parameters which may not have any real physical meaning 
(Beven, 1989). 
 In contrast, the Bayesian Total Error Analysis (BATEA) methodology (Kavetski 
et al., 2003) is based on a “total-error” approach using rigorous Bayesian methods. The 
BATEA scheme has been tested against both real and synthetic data to verify the 
procedure (Kavetski et al., 2003) and results to date indicate that the methodology is 
robust and yields parameter inferences that are in principle less biased due to potential 
input errors. To illustrate the degree of bias that arises as a function of ignoring rainfall 
forcing error, Kavetski et al. (2003) examined the probability distributions of a key 
model parameter following traditional standard least-squares (SLS) identification and 
the BATEA methodology. The resultant posterior parameter distributions were very 
different, but it was noted that tight constraint of uncertainty following the traditional 
SLS approach indicated a wholly false confidence in the input error-biased parameter 
distribution. It is therefore clear that ignoring key aspects of data uncertainty results in 
marked parameter bias. BATEA is unique in that it permits the inclusion of error 
models for observations (both input and output) within any hydrological model. It 
provides a rigorous framework for dealing with data, parameter and model uncertainty. 
Importantly it has revealed the key role of rainfall data error which, if ignored, will 
produce biased parameters and hinder attempts at regionalization. The direct 
consequences of largely ignoring error in input rainfall data are: less robust parameter 
inferences (estimates of appropriate model parameters), biased optimum parameter 
sets, and incorrect estimates of predictive uncertainty as a function of the above. The 
indirect consequences are: model parameters cannot be inverted for use as model-scale 
estimates of meaningful quantities and model predictions of “future” events (e.g. 
response to climate change, land use change) will be in error. Indeed, the validity of all 
model predictions may be inappropriately open to question, through failures of model 
predictions. 
 Throughout many areas of science and engineering, researchers have proposed, 
constructed and developed models for the purpose of understanding, simulating and 
predicting the behaviour of many natural systems. However, often the apparent success 
of such model applications, and hence their subsequent employment for a range of 
research purposes, is not fully tested as little is presented with regard to the uncertainty 
of the model’s subsequent predictions. This apparent success, coupled with appealing 
model sophistication, may be used to justify inaccurate and largely untested inferences 
on the basis of these modelling studies. There is a critical need to improve the realism 
of parameter-model inference techniques to achieve more realistic predictions. 
 Given the problems associated with model and parameter identification and the 
inadequacy of current uncertainty estimation frameworks to account for forcing errors, 
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more holistic treatment of the sources of uncertainty is required. The successful devel-
opment and implementation of such a methodology would provide a new and more 
realistic methodology for the assessment of predictive uncertainty for application 
throughout the fields of environmental science and engineering. If this was achieved 
the following outcomes might be expected: 
 

– quantification of the relative roles of the key sources of uncertainty;  
– identification of a suitable model structure; 
– refined predictive uncertainty estimation; 
– refined parameter uncertainty estimation; 
– refined forcing error identification; 
– increased insight into the minimization of error and uncertainty; 
– increased ability to test model hypotheses; and 
– improved knowledge to design targeted field programmes (measuring the data that 

are really needed to reduce the uncertainty of our models). 
 
 
5.7  APPLICATION TO UNGAUGED BASINS 
In recent years, the importance of developing globally consistent hydrological 
modelling and parameter estimation techniques has become apparent. In 2001, IAHS 
declared a major initiative, the International Decade of Ungauged Basins (Sivapalan et 
al., 2003b). Similarly the Global Energy and Water Experiment (GEWEX) has recently 
created MOPEX (Model Parameter Estimation Experiment, Schaake et al., 2001). The 
aim of these initiatives is to derive representative models and their associated 
parameter values for both gauged and ungauged basins across the globe in order to 
provide more accurate tools for water resources management in ungauged basins.  
 To attain the full utility of hydrological modelling, hydrological models must be 
applicable to all basins. In applying models to ungauged basins where no records are 
available with which to calibrate or verify the model, significant uncertainty is 
associated with the a priori specification of both model and parameters. The applied 
basin model is assumed to correctly represent the dominant flow generating 
mechanisms, whilst its specified parameters are assumed to be meaningful.   
 To identify common physical characteristics of basins that may then relate to 
model parameters, regionalization approaches have been developed (for example, Post 
& Jakeman, 1996; Abdulla & Lettenmaier, 1997; Sefton & Howarth, 1998; Seibert, 
1999; Yokoo et al., 2001). Typically, a single conceptual hydrological model is 
selected and subsequently calibrated to the records of a number of gauged basins. 
Regression analysis is then performed to assess the consistency of individual parameter 
values (for instance, hydraulic conductivity, root zone store) against measured physical 
basin characteristics (e.g. soil texture, vegetation). These approaches have revealed 
some success in finding significant relationships for approximately half of the model 
parameters, but the predictive capability of models varied (e.g. Post & Jakeman, 1996; 
Seibert, 1999). Apparent parameter consistency or variability between different basin 
characteristics and responses in previous studies will have been significantly biased 
due to: (a) the assumed single applicable model; and (b) the calibration scheme 
employed providing biased parameter estimates. As noted by Post & Jakeman (1996), 
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improvements in predictive capability would be attained through better understanding 
of the controls on hydrological response.  
 The problems of natural variability and data scarcity have meant that the 
development of a single hydrological model based upon on a fundamental “physics” of 
hydrology is thought unattainable (Beven, 1989, 1993). As a consequence, hydrolog-
ical models are largely “conceptual”, in that they constitute simplified representations 
of the mechanisms perceived to dominate the hydrological problem at hand. This 
means that there exists a whole range of different hydrological models to achieve 
particular tasks at specific spatial and temporal scales. 
 
 
5.8  CONCLUDING REMARKS AND FUTURE CHALLENGES  
Much hydrological science has focused on and sought fundamental physical insights 
into the behaviour of water in the natural environment. These fundamental insights 
have, however, been gained typically at small scales. For instance, major successes in 
fundamental hydrological sciences include Darcy’s law, Richards equation, the physics 
of evapotranspiration, the physics of sediment entrainment and transport and 
hydrogeochemical interactions. However, much of modern hydrological science has 
also largely been based on the development and application of integrated models, 
which include the classical hydrological components and also modules from neigh-
bouring disciplines, such as ecology and socio-economics and which are typically 
developed and utilized at much larger scales. Finally, another major section of 
hydrological science has focused on the development of complex measurement 
techniques for estimating, for instance, evapotranspiration (e.g. eddy covariance, 
Bowen ratio) or for making large-scale hydrological observations through remote 
sensing (e.g. soil moisture, evapotranspiration, terrain). 
 Despite the major efforts in each of these sub-areas of hydrological science, there 
is an apparent disconnect between them. It is often difficult to integrate the diverse 
achievements attained in the fundamental principles (or physics) of hydrology, 
practical hydrological modelling, and novel hydrological measurement techniques. As 
a consequence, much research focuses on model identification as practical models 
cannot be easily parameterized with field properties. There are however many different 
approaches that will assist in achieving integration within hydrological science. 
Developed calibration approaches include SLS, SCE, GLUE and Bayesian methods. 
All are entirely reliant on observed data and lead to the necessity of “parsimonious” 
models, given limited data and the limited information content of those data. The 
problem of ungauged basins is highly significant, as by definition no calibration data 
are available and predictions rely on transferring insights either from nearby basins or 
through regionalization. 
 As noted in the previous sections, there are many problems associated with 
regionalization. These include the assumptions that the runoff model itself is applicable 
everywhere, that calibration schemes need only focus on fitting to discharge data alone, 
and that forcing data are perfect. These assumptions invalidate any real meaning in 
derived model parameters so that it is difficult to justify retrieved parameter values and 
hence regionalization relationships are not robustly achieved. In many cases, different 
models/approaches are utilized for regionalizing different aspects of the hydrological 
regime; for example, flood vs low flow regionalization techniques.  
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 Arguably, we have reached the limit of classical regionalization capability using 
current calibration techniques and standard rainfall–runoff data alone. There is a clear 
need to evaluate and integrate alternative methods/techniques as well as to augment 
model applications with alternative data. These are the key challenges to be addressed 
if meaningful progress is to be made in hydrological modelling, particularly in the 
pursuit of making predictions in ungauged basins. 
 


